Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(13)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37443757

RESUMO

We assessed interactions between the astrocytic volume-regulated anion channel (VRAC) and aquaporin 4 (AQP4) in the supraoptic nucleus (SON). Acute SON slices and cultures of hypothalamic astrocytes prepared from rats received hyposmotic challenge (HOC) with/without VRAC or AQP4 blockers. In acute slices, HOC caused an early decrease with a late rebound in the neuronal firing rate of vasopressin neurons, which required activity of astrocytic AQP4 and VRAC. HOC also caused a persistent decrease in the excitatory postsynaptic current frequency, supported by VRAC and AQP4 activity in early HOC; late HOC required only VRAC activity. These events were associated with the dynamics of glial fibrillary acidic protein (GFAP) filaments, the late retraction of which was mediated by VRAC activity; this activity also mediated an HOC-evoked early increase in AQP4 expression and late subside in GFAP-AQP4 colocalization. AQP4 activity supported an early HOC-evoked increase in VRAC levels and its colocalization with GFAP. In cultured astrocytes, late HOC augmented VRAC currents, the activation of which depended on AQP4 pre-HOC/HOC activity. HOC caused an early increase in VRAC expression followed by a late rebound, requiring AQP4 and VRAC, or only AQP4 activity, respectively. Astrocytic swelling in early HOC depended on AQP4 activity, and so did the early extension of GFAP filaments. VRAC and AQP4 activity supported late regulatory volume decrease, the retraction of GFAP filaments, and subside in GFAP-VRAC colocalization. Taken together, astrocytic morphological plasticity relies on the coordinated activities of VRAC and AQP4, which are mutually regulated in the astrocytic mediation of HOC-evoked modulation of vasopressin neuronal activity.


Assuntos
Aquaporina 4 , Núcleo Supraóptico , Ratos , Animais , Aquaporina 4/metabolismo , Núcleo Supraóptico/metabolismo , Astrócitos/metabolismo , Vasopressinas/farmacologia , Vasopressinas/metabolismo , Ânions/metabolismo , Neurônios/metabolismo
2.
ASN Neuro ; 13: 17590914211014731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34210188

RESUMO

Oxytocin (OT), a neuropeptide produced in the supraoptic (SON) and paraventricular (PVN) nuclei, is not only essential for lactation and maternal behavior but also for normal immunological activity. However, mechanisms underlying OT regulation of maternal behavior and its association with immunity around parturition, particularly under mental and physical stress, remain unclear. Here, we observed effects of OT on maternal behavior in association with immunological activity in rats after cesarean delivery (CD), a model of reproductive stress. CD significantly reduced maternal interests to the pups throughout postpartum day 1-8. On postpartum day 5, CD decreased plasma OT levels and thymic index but increased vasopressin, interleukin (IL)-1ß, IL-6 and IL-10 levels. CD had no significant effect on plasma adrenocorticotropic hormone and corticosterone levels. In the hypothalamus, CD decreased corticotropin-releasing hormone contents in the PVN but increased OT contents in the PVN and SON and OT release from hypothalamic implants. CD also increased c-Fos expression, particularly in the cytoplasm of OT neurons. Lastly, CD depolarized resting membrane potential and increased spike width while increasing the variability of the firing rate of OT neurons in brain slices. Thus, CD can increase hypothalamic OT contents and release but reduce pituitary release of OT into the blood, which is associated with depressive-like maternal behavior, increased inflammatory cytokine release and decreased relative weight of the thymus.


Assuntos
Ocitocina , Núcleo Hipotalâmico Paraventricular , Animais , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Humanos , Hipotálamo/metabolismo , Comportamento Materno , Núcleo Hipotalâmico Paraventricular/metabolismo , Gravidez , Ratos
3.
Neuroscience ; 468: 235-246, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34166764

RESUMO

Oxytocin (OT) is a key factor for maternal behavior. However, neurochemical regulation of OT neurons, the major source of OT, remains incompletely understood. Here we report the effect of intranasally-applied OT (IAO) on OT neuronal activity in the supraoptic nucleus (SON) and on maternal behavior in a rat model of cesarean delivery (CD) at day 4-5 (stage I) and day 8-9 (stage II) following delivery. We found that at stage I, CD dams exhibited significantly longer latency of pup retrieval, lower number of anogenital licks and smaller acinar area of the mammary glands. In the SON, the number of OT neurons expressing phosphorylated extracellular signal-regulated protein kinase 1/2 (pERK 1/2) decreased significantly. IAO reversed the depressive-like maternal behavior and involution-like change in the mammary glands, and restored the number of pERK1/2-positive OT neurons in CD dams. At stage II, CD did not significantly influence the latency of retrieval and pERK1/2 expression in the SON. However, CD still reduced the number of anogenital licks during suckling, which was reversed by IAO. Notably, IAO but not hypodermic OT application in CD dams significantly increased litter's body weight gains. In brain slices, CD but not CD plus IAO significantly depolarized membrane potential and increased spike duration in OT neurons. In vasopressin neurons, CD, but not CD plus IAO, significantly depolarized membrane potential and increased the firing rate. Thus, decreased OT neuronal activity and increased vasopressin neuronal activity impair maternal behavior in CD dams, which can be prevented by IAO .


Assuntos
Ocitocina , Núcleo Supraóptico , Animais , Feminino , Humanos , Comportamento Materno , Neurônios , Gravidez , Ratos , Ratos Sprague-Dawley
4.
J Stroke Cerebrovasc Dis ; 25(6): 1289-300, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27068863

RESUMO

BACKGROUND: Brain edema formation is a major cause of brain damages and the high mortality of ischemic stroke. The aim of this review is to explore the relationship between ischemic brain edema formation and vasopressin (VP) hypersecretion in addition to the oxygen and glucose deprivation and the ensuing reperfusion injury. METHODS: Pertinent studies involving ischemic stroke, brain edema formation, astrocytes, and VP were identified by a search of the PubMed and the Web of Science databases in January 2016. Based on clinical findings and reports of animal experiments using ischemic stroke models, this systematic review reanalyzes the implication of individual reports in the edema formation and then establishes the inherent links among them. RESULTS: This systematic review reveals that cytotoxic edema and vasogenic brain edema in classical view are mainly under the influence of a continuous malfunction of astrocytic plasticity. Adaptive VP secretion can modulate membrane ion transport, water permeability, and blood-brain barrier integrity, which are largely via changing astrocytic plasticity. Maladaptive VP hypersecretion leads to disruptions of ion and water balance across cell membranes as well as the integrity of the blood-brain barrier. This review highlights our current understandings of the cellular mechanisms underlying ischemic brain edema formation and its association with VP hypersecretion. CONCLUSIONS: VP hypersecretion promotes brain edema formation in ischemic stroke by disrupting hydromineral balance in the neurovascular unit; suppressing VP hypersecretion has the potential to alleviate ischemic brain edema.


Assuntos
Astrócitos/metabolismo , Edema Encefálico/etiologia , Isquemia Encefálica/complicações , Encéfalo/metabolismo , Acidente Vascular Cerebral/complicações , Vasopressinas/metabolismo , Animais , Astrócitos/patologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Edema Encefálico/metabolismo , Edema Encefálico/fisiopatologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Humanos , Fenótipo , Prognóstico , Fatores de Risco , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Regulação para Cima
5.
Cell Physiol Biochem ; 34(3): 854-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25199673

RESUMO

BACKGROUND: Resveratrol has shown potent antioxidant activity in ischemia models. The present study was performed to determine whether resveratrol protects against cerebral ischemia-induced neuronal and myocardial injury by interfering with mitochondrial homeostasis. METHODS: Wistar rats were pretreated with resveratrol or vehicle intraperitoneally for one week and then subjected to cerebral ischemia via middle cerebral artery occlusion (MCAO) for 24 h. Oxidation was evaluated by quantitating SOD activity and MDA levels. Apoptosis and autophagy were measured based on TUNEL staining and the expression levels of Bcl-2, Bax and LC3II. Mitochondrial changes were evaluated by transmission electron microscopy and by analyzing the mitochondrial membrane potential. RESULTS: Resveratrol significantly decreased mortality, neurological deficits, infarction volume and MDA levels and increased SOD activity. Furthermore, neurocyte apoptosis was alleviated by resveratrol as indicated by the increased Bcl-2/Bax ratio, increased LC3II expression and a decreased number of TUNEL-positive neurocytes. Resveratrol preserved the mitochondria in neurons and cardiomyocytes and significantly improved cardiac function. CONCLUSION: Resveratrol protected brain tissues against ischemic damage by interfering with mitochondrial homeostasis and inhibiting apoptosis. Furthermore, resveratrol attenuated myocardial damage, suggesting that it may be a novel therapy for cerebral ischemia diseases.


Assuntos
Isquemia Encefálica/patologia , Coração/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Miocárdio/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estilbenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Cardiotônicos/farmacologia , Modelos Animais de Doenças , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Resveratrol
6.
Sheng Li Xue Bao ; 58(1): 58-64, 2006 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-16489405

RESUMO

The modulation of ACh on delayed rectifier-like potassium currents (I(K)) was studied in freshly dissociated cerebral cortical neurons using the whole-cell patch-clamp technique. Wistar rats between 10- and 14-day old of both sexes were used. After rats were decapitated, their brains were quickly removed, iced, and then manually cut into 400 mum slices. Slices were then incubated for 0.5 h at 32 degrees C in a buffered artificial cerebrospinal fluid (ACSF) bubbled with 95% O2, 5% CO2. Slices were then removed into buffered ACSF containing protease (0.5 mg/ml) at 32 degrees C. After 30 min of enzyme digestion, tissue was rinsed three times in the buffered saline. Then the enzyme-treated slices were mechanically dissociated with a graded series of fire-polished Pasteur pipettes. The cell suspension was then plated into a 35 mm dish and placed on the stage of a Olympus inverted microscope. For whole-cell recordings of currents, standard voltage-clamp techniques were used. Neurons were held at -80 mV, and the I(K) was evoked by 2 000 ms depolarizing voltage commands to potential between -40 mV and +60 mV in 10 mV steps applied at a frequency of 0.5 Hz. It was found that the inhibitory effect of ACh (0.1, 1, 10, 100 mumol/L) on I(K) was dose-dependent. It was also found that ACh affected the activation process of I(K) significantly, i.e., the activation curve of I(K) was characterized by half-activation potential of (-41.8+/-9.7) mV and a slope factor of (30.7+/-7.2) mV in the cortical neurons and they were changed to (-122.4+/-38.6) mV and (42.4+/-7.0) mV, respectively, after giving ACh (10 mumol/L). Tubocurarine (100 mumol/L) antagonized the inhibitory effect of ACh on I(K), and the drop of currents varied from the control value of (36.5+/-7..8)% to (16.9+/-13.8)% (n=8, P<0.01). 4-DAMP (10 mumol/L) blocked the inhibitory effect of ACh on I(K), and the currents reduced from the control value of (36.5+/-7.8)% to (26.8+/-4.7) % (n=6, P<0.05). Pirenzepin did not antagonize the inhibition of ACh on I(K) (n=7, P>0.05). Chelerythrine (20 mumol/L) blocked the inhibitory effect of ACh on I(K) and the currents reduced from the control value of (36.5+/-7.8)% to (11.7+/-17.3)% (n=6, P<0.05). On the contrary, PDBu (10 mumol/L) strengthened the inhibition of ACh on I(K) and the drop of currents changed from the control value of (36.5+/-7.8)% to (59.2+/-14.0)% (n=5, P<0.05). PDBu abolished the antagonism of chelerythrine on ACh in cortical neurons. It is suggested that the ACh-induced depolarization of neurons in the cortex is attributed to the inhibition of I(K) that is most likely evoked by the activation of nicotinic ACh receptors and muscarinic M3 receptor via protein kinase C (PKC) signal transduction pathway.


Assuntos
Acetilcolina/fisiologia , Canais de Potássio de Retificação Tardia/antagonistas & inibidores , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Separação Celular , Feminino , Masculino , Neurônios/metabolismo , Técnicas de Patch-Clamp , Proteína Quinase C/metabolismo , Proteína Quinase C/fisiologia , Ratos , Ratos Wistar , Receptor Muscarínico M3/metabolismo , Receptores Nicotínicos/metabolismo , Transdução de Sinais/fisiologia , Córtex Somatossensorial/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...